√Integral Tak Tentu : Pengertian, Rumus, Sifat dan Contoh Soal (Lengkap)

Integral Tak Tentu : Pengertian, Rumus, Sifat dan Contoh Soal (Lengkap) – Apakah yang dimaksud dengan Integral Tak Tentu lalu bagaimana Cara perhitungan Operasi matematikanya ?Pada kesempatan ini kampuskuis.com akan menjelaskan tentang pengertian integral tak tentu dan rumus, sifat serta contohnya. Simak penjelasan dibawah ini dengan seksama.

Pengertian Integral Tak tentu

Integral adalah suatu bentuk pada operasi matematika yang menjadi kebalikan atau biasa juga disebut sebagai invers dari operasi turunan. Serta limit dari jumlah maupun suatu luas daerah tertentu.

Terdapat dua macam hal yang harus dilaksanakan di dalam operasi integral yang mana keduanya telah dikategorikan menjadi 2 jenis integral.Antara lain: integral sebagai invers atau kebalikan dari turunan atau yang biasa juga disebut sebagai Integral Tak Tentu.Serta yang kedua, integral sebagai limit dari jumlah maupun suatu luas daerah tertentu yang disebut sebagai integral tentu.

Integral tak tentu (bahasa Inggris: indefinite integral) atau antiderivatif adalah suatu bentuk operasi pengintegralan suatu fungsi yang menghasilkan suatu fungsi baru. Fungsi ini belum memiliki nilai pasti (berupa variabel) sehingga cara pengintegralan yang menghasilkan fungsi tak tentu ini disebut “integral tak tentu”.

Bila f adalah integral tak tentu dari suatu fungsi F maka F’= f. Proses untuk memecahkan antiderivatif adalah antidiferensiasi Antiderivatif yang terkait dengan pasti integral melalui “Teorema dasar kalkulus”, dan memberikan cara mudah untuk menghitung integral dari berbagai fungsi.

Seperti yang telah disebutkan sebelumya, Integral tak tentu atau yang dalam bahasa Inggris biasa disebut sebagai Indefinite Integral maupun ada juga yang menyebutnya sebagai Antiderivatif merupakan sebuah bentuk operasi pengintegralan pada suatu fungsi yang menghasilkan suatu fungsi baru.

Fungsi ini belum mempunyai nilai pasti sampai cara pengintegralan yang menghasilkan fungsi tidak tentu ini disebut sebagai integral tak tentu.Apabila f berwujud integral tak tentu dari sebuah fungsi F maka F’= f.

Proses memecahkan antiderivatif adalah antidiferensiasi Antiderivatif yang berhubungan dengan integral lewat “Teorema dasar kalkulus”. Serta memberi cara mudah untuk menghitung integral dari berbagai fungsi.

Seperti yang telah dijelaskan sebelumnya, integral tak tentu dalam matematika merupakan invers/kebalikan dari turunan.Turunan dari sebuah fungsi, apabila diintegralkan akan menghasilkan fungsi itu sendiri.

Mari perthatikan baik-baik contoh dari beberapa turunan dalam fungsi aljabar di bawah ini:

  • Turunan dari fungsi aljabar y = x3 adalah yI = 3x2
  • Turunan dari fungsi aljabar y = x3 + 8 adalah yI = 3x2
  • Turunan dari fungsi aljabar y = x3 + 17 adalah yI = 3x2
  • Turunan dari fungsi aljabar y = x3 – 6 adalah yI = 3x2

Seperti yang telah kita pelajari pada materi turunan, variabel dalam sebuah fungsi akan mengalami penurunan pangkat.

Berdasarkan contoh di atas, maka dapat kita ketahui jika terdapat banyak fungsi yang mempunyai hasil turunan yang sama yakni y= 3x2.

Fungsi dari variabel x3 maupun fungsi dari variabel x3 yang dikurang atau ditambah pada sebuah bilangan (contohnya: +8, +17, atau -6) mempunyai turunan yang sama.

Apabila turunan itu kita integralkan, maka harusnya akan menjadi fungsi-fungsi awal sebelum diturunkan.

Tetapi, dalam kasus yang tidak diketahui fungsi awal dari sebuah turunan, maka hasil integral dari turunan tersebut bisa kita tulis menjadi:

f(x) = y = x3 + C

Dengan nilai C dapat berapa pun. Notasi C ini juga disebut sebagai konstanta integral. Integral tak tentu dari sebuah fungsi dinotasikan seperti berikut:

Dalam notasi di atas dapat kita baca integral terhadap x”. notasi  disebut integran. Secara umum integral dari fungsi f(x) merupakan penjumlahan F(x) dengan C atau:

Sebab integral dan juga turunan saling berkaitan, maka rumus integral bisa didapatkan dari rumusan penurunan. Apabila turunan:

Maka rumus integral aljabar didapatkan:

dengan syarat apabila n ≠ 1

Sebagai contoh perhatikan beberapa integral aljabar fungsi-fungsi berikut ini:

  • Cara Membaca Integral Tak Tentu

Setelah membaca uraian di atas, taukah kalian cara membaca kalimat integral? Integral di baca seperti ini:

yang di baca Integral Tak Tentu Dari Fungsi f(x) Terhadap Variabel X.

Rumus Umum Integral

Berikut ini adalah rumus umum yang ada pada integral:

  • Pengembangan Rumus Integral

Mari perthatikan baik-baik contoh dari beberapa turunan dalam fungsi aljabar di bawah ini:

  • Turunan dari fungsi aljabar y = x3 adalah yI = 3x2
  • Turunan dari fungsi aljabar y = x3 + 8 adalah yI = 3x2
  • Turunan dari fungsi aljabar y = x3 + 17 adalah yI = 3x2
  • Turunan dari fungsi aljabar y = x3 – 6 adalah yI = 3x2

Sifat Integral

Sifat-sifat dari integral antara lain:

  • ∫ k . f(x)dx = k. ∫ f(x)dx                         (dengan k adalah konstanta)
  • ∫ f(x) + g(x)dx = ∫ (x)dx + ∫ g(x)dx
  • ∫ f(x) – g(x)dx = ∫ f(x)dx – ∫ g(x)dx

Menentukan Persamaan Kurva

Gradien serta persamaan garis singgung kurva pada suatu titik.

Apabila y = f(x), gradien garis singgung kurva pada sembarang titik pada kurva adalah y’ = = f'(x).

Oleh karena itu, apabila gradien garis singgungnya telah diketahui sehingga persamaan kurvanya dapat ditentukan dengan cara seperti berikut ini:

y = ∫ f ‘ (x) dx = f(x) + c

Jika salah satu titik yang melewati kurva telah diketahui, nilai c dapat juga diketahui sehingga persamaan kurvanya dapat ditentukan.

Contoh Soal

Soal 1

Pembahasan

Dalam soal ini, batas atas adalah 1 dan batas bawah -2. Tahap pertama yang perlu kita lakukan adalah melakukan integral fungsi  3x2 + 5x + 2 menjadi seperti di bawah ini.

Setelah kita mendapatkan bentuk integral dari fungsi tersebut, kita dapat memasukkan nilai batas atas dan bawah ke dalam fungsi tersebut lalu mengurangkannya menjadi seperti berikut.

Hasil dari integral tersebut adalah 27,5.

Soal 2.

Diketahui turunan y = f(x) adalah = f ‘(x) = 2x + 3

Jika kurva y = f(x) lewat titik (1, 6), maka tentukan persamaan kurva tersebut.

Jawab:

f ‘(x) = 2x + 3.
y = f(x) = ʃ (2x + 3) dx = x2 + 3x + c.

Kurva melalui titik (1, 6), berarti f(1) = 6 hingga dapat di tentukan nilai c, yakni 1 + 3 + c = 6 ↔ c = 2.

Maka, persamaan kurva yang dimaksud yaitu:

y = f(x) = x2 + 3x + 2.

Soal 3.

Carilah hasil dari ʃ21 6xdx !

Pembahasan

Jadi, hasil dari ʃ21 6xdx adalah 14.

Soal 4

Gradien garis singgung kurva pada titik (x, y) ialah 2x – 7. Apabila kurva itu melewati titik (4, –2), maka tentukanlah persamaan kurvanya.

Jawab:

f ‘(x) = = 2x – 7
y = f(x) = ʃ (2x – 7) dx = x2 – 7x + c.

Sebab kurva melewati titik (4, –2)
maka:

f(4) = –2 ↔ 42 – 7(4) + c = –2
–12 + c = –2
c = 10

Maka, persamaan kurva tersebut yakni:

y = x2 – 7x + 10.

Berapakah nilai integral tentu dari ʃ-2-2 3x– 2x + 1 dx ?

Pembahasan

Jadi, nilai integral tentu dari ʃ-2-2 3x– 2x + 1 dx adalah 20.

Soal 5.

Hitunglah nilai integral tentu dari ʃ91/√x dx !

Pembahasan

Jadi, nilai integral tentu dari ʃ91/√x dx adalah 2.

Demikianlah penjelasan tentang Integral Tak Tentu: Pengertian, Rumus, Sifat dan Contoh Soal (Lengkap). Semoga kampuskuis.com sudah memberikan informasi lengkap.

Leave a Comment